Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes
نویسندگان
چکیده
Adipose tissue has a central role in the regulation of energy balance and homoeostasis. There are two main types of adipose tissue: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT from certain depots, in response to appropriate stimuli, can undergo a process known as browning where it takes on characteristics of BAT, notably the induction of UCP1 (uncoupling protein 1) expression and the presence of multilocular lipid droplets and multiple mitochondria. How browning is regulated is an intense topic of investigation as it has the potential to tilt the energy balance from storage to expenditure, a strategy that holds promise to combat the growing epidemic of obesity and metabolic syndrome. This review focuses on the transcriptional regulators as well as various proteins and secreted mediators that have been shown to play a role in browning. Emphasis is on describing how many of these factors exert their effects by regulating the three main transcriptional regulators of classical BAT development, namely PRDM16 (PR domain containing 16), PPARγ (peroxisome proliferator-activated receptor γ) and PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which have been shown to be the key nodes in the regulation of inducible brown fat.
منابع مشابه
Transcription regulators and hormones involved in the development of brown fat and white fat browning. Transcriptional and hormonal control of brown/beige fat development.
The high prevalence of obesity and related metabolic complications has inspired research on adipose tissues. Three kinds of adipose tissues are identified in mammals: brown adipose tissue (BAT), beige or brite adipose tissue and white adipose tissue (WAT). Beige adipocytes share some characteristics with brown adipocytes such as the expression of UCP1. Beige adipocytes can be activated by envir...
متن کاملLiraglutide suppresses obesity and induces brown fat-like phenotype via Soluble Guanylyl Cyclase mediated pathway in vivo and in vitro
Strategies for driving white adipose tissue (WAT) to acquire brown-like characteristics are a promising approach to reduce obesity. Liraglutide has been reported to active brown adipose tissue (BAT) thermogenesis and WAT browning by rapid intracerebroventricular injection in mice. In this study, we investigated the effects and possible mechanisms of liraglutide on WAT browning by chronic treatm...
متن کاملEndocannabinoid regulation in white and brown adipose tissue following thermogenic activation.
The endocannabinoids and their main receptor, cannabinoid type-1 (CB1), suppress intracellular cyclic AMP levels and have emerged as key players in the control of energy metabolism. CB1 agonists and blockers have been reported to influence the thermogenic function of white and brown adipose tissue (WAT and BAT), affecting body weight through the inhibition and stimulation of energy expenditure,...
متن کاملTranscriptional fingerprinting of “browning” white fat identifies NRG4 as a novel adipokine
Brown adipocytes help to maintain body temperature by the expression of a unique set of genes that facilitate cellular metabolic events including uncoupling protein 1-dependent thermogenesis. The dissipation of energy in brown adipose tissue (BAT) is in stark contrast to white adipose tissue (WAT) which is the body's primary site of energy storage. However, adipose tissue is highly dynamic and ...
متن کاملEngineering Fat Cell Fate to Fight Obesity and Metabolic Diseases.
All mammals harbor two types of adipose tissues that serve distinct physiological functions: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT functions mainly in the storage of excess energy, while BAT specializes in dissipating energy in the form of heat and functions as a defense against hypothermia and obesity. Since adult humans possess significant amounts of active BAT depots...
متن کامل